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A Cross validation results

Fig A. Cross-validation and holdout performance results for organisms
with train data size > 500 PPIs. The y-axes give precision (number of PPIs
correctly predicted at threshold), the x-axes the recall (number of experimental
interactions predicted at that threshold). Bars give the standard deviation; negatives
were sampled at a rate of 10:1 (ten negatives for one positive). Each subplot is referred
as follows: A (Escherichia coli), B (Caenorhabditis elegans), C (Drosophila
melanogaster), D (Arabidopsis thaliana), E (Mus musculus).
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Similar levels of training and holdout performances Machine learning
applications often reach very different levels of performance for the training and the
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Fig B. Cross-validation and hold-out performance results of Escherichia
coli. Panel (A): Precision-recall curve for cross-validation in Escherichia coli with
different optimization hyperparameters. All results in the paper were reported for the
version k = 5/σ = 11 which clearly was not best for Escherichia coli, instead the
combination k = 3/σ = 4 yielded the best performance (purple). Panel (B):
Comparison of cross-validation hyperparameter combinations k = 3/σ = 4 (best) with
k = 5/σ = 11 (default) and cross validation of human from earlier publication [1].
Panel (C): Cross-validation and hold-out results of hyperparameter combination
k = 3/σ = 4 (best) compared with test results for human [1].
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testing set. We did not observe this for the organisms for which we could compile
comprehensive cross-validation results (Fig. A: difference between black line and colored
points). Most similar were the results for mouse (Mus musculus: Fig. A E). For
Escherichia coli (Fig. A A), Caenorhabditis elegans (worm, Fig. A B), and Drosophila
melanogaster (fruit fly, Fig. A C), training and testing were less similar for high recall,
i.e. for the most reliable predictions. Most unusual were the results for Drosophila
melanogaster (Fig. A C) and Escherichia coli (Fig. A A), for which test performance
was even higher than training performance for a substantial fraction of highly reliable
predictions (toward left, i.e. low recall in Fig. A A, and Fig. A C the black curves are
above the dots). For Arabidopsis thaliana (water-cress, Fig. A D) testing performance
was better than training throughout the entire ROC-like curve. Typically, there is only
one explanation for such unexpected findings: points for which testing is better than
training provide estimates for the resolution of our performance estimates. This reality
was captured well by the estimates for standard errors: within one standard error,
training and testing were identical for all organisms.

Hyperparameter optimization for Escherichia coli Our most important
objective when applying machine learning typically is to reduce the risk of
over-optimization, i.e. to optimize generalization instead of apparent performance as
usually over-estimated by standard cross-validation. Therefore, we trained each
organism model with the same set of hyperparameters (k-mer = 5 and σ = 11). This
standard choice yielded the best performance for almost all organisms. One exception
was Escherichia coli. For the choice k-mer = 3 and σ = 4, the cross-validation
precision-recall values exceeded those for all other hyperparameter combinations (Fig. B
A). This top choice for Escherichia coli reached higher performance than the
human-specific model in the realm of low recall (Fig. B B). This choice for Escherichia
coli also results in high performance for the holdout set of Escherichia coli which
exceeds the test performance of Homo sapiens from [1] especially in the realm of low
recall (Fig. BC).
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Table 1. Summary of experimental evidences found in BioGRID [2],
DIP [3], and IntAct [4]. Organism: latin name for eight model organisms sorted
alphabetically; NpredPPIs:Number of PPIs of 1% ranked predictions; NEvidence:
number of PPIs for which experimental evidences was found in at least on of the three
databases used for training; NcorrectEvidence: number of PPIs with experimental
evidence which were correctly classified by our approach; Accuracy: The fraction of
correct predictions within the predictions with experimental evidence.

Organism NpredPPIs NEvidence NcorrectEvidence Accuracy

A. thaliana 2,064,410 62 60 96.77 %

C. elegans 1,421,719 67 69 97.1 %

D. melanogaster 319,160 152 197 77.16 %

E. coli 27,296 82 90 91.11%

M. musculus 1,313,253 0 0 -

P. falciparum 90,418 143 174 82.18%

S. pombe 83,497 166 177 93.79%

R. norvegicus 2,119,225 3 0 0.00

Sum over all 8 6,125,724 772 670 86.79 %

B Evaluation of novel predictions

We used BioGRID [2], DIP [3], and IntAct [4] (Uniprot uses quality-filtered subset
of binary interactions automatically derived from the IntAct database) for large-scale
evaluation of our novel predictions. Although we used BioGRID [2], DIP [3], and
IntAct [4] as the base for our organism-specific models, it was only a small subset of the
databases’ PPIs used for training our models.

Fig C. Percentages of predictions as a function of PPI quality score
according to expert knowledge scoring scheme [5]. This scoring scheme was
also used in the manuscript to obtain high-quality PPIs for training. The positive and
negative PPIs presented in these plots are findings of experimental evidences found in
BioGRID [2], DIP [3], and IntAct [4].
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The PPIs published on our online service only include PPIs which have not any
experimental evidence from any of these three databases. In order to perform an
evaluation of the quality of the predictions, we used the top 1 % of all predictions
(ranked according to our confidence measure) which were not included in the training
set. We compared these top predictions against all experimental from BioGRID [2],
DIP [3], and IntAct [4]. The findings of experimental evidences is listed in Table 1. As
Table 1 shows, except for Mus musculus and Rattus norvegicus for which none or only
falsely predicted PPIs was found, we found between 60 and 170 PPIs with experimental
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evidence for each organism. The accuracy of the evidences correctly predicted is at least
over 75 %, with half of all investigated organisms having accuracies of over 90 %.

Looking closer at the distribution of the evidences in terms of average, we found
three cases which we show in Figure C. With Escherichia coli (Figure C a), we observe
a high percentage of lower average expert knowledge scores (below 4 for almost 80 % of
the evidences) for negative PPIs, and a high percentage of high average expert knowlege
scores (greater or equal 6 for 60 % of the evidences found). This shows that for
Escherichia coli our model succeeds in predicting PPIs correctly which also has
experimental evidences with high average expert knowledge scores. However, for
organisms Arabidopsis thaliana (Figure C b), Caenorhabditis elegans, Drosophila
melanogaster, Plasmodium falciparum and Schizosaccharomyces pombe we witness PPI
curves which almost overlaps. This indicate a similar distribution of knowledge expert
scores for both positive and negative PPIs. This also is a consequence of the lack of
high quality annotations present in the databases. The third case of distribution that
we observed is with Mus musculus, for which we only found three experimental
evidences and none of them are correctly predicted by our approach. Nevertheless, the
experimental evidences are highly doubtful as their methods each score only 1 in the
expert knowledge scoring system.
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